
Associating Finite Groups with Dessins d’Enfants
Luis Baeza, Edwin Baeza, Conner Lawrence, and Chenkai Wang

Abstract

Each finite, connected planar graph has an automorphism group G ; such
permutations can be extended to automorphisms of the Riemann sphere
S

2(R) ' P1(C). In 1984, Alexander Grothendieck, inspired by a result of
Gennadĭı Bely̆ı from 1979, constructed a finite, connected planar graph
�� via certain rational functions �(z) = p(z)/q(z) by looking at the
inverse image of the interval from 0 to 1. The automorphisms of such a
graph can be identified with the Galois group Aut(�) of the associated
rational function � : P1(C) ! P1(C). In this project, we investigate how
restrictive Grothendieck’s concept of a Dessin d’Enfant is in generating all
automorphisms of planar graphs. We discuss the rigid rotations of the
Platonic solids (the tetrahedron, cube, octahedron, icosahedron, and
dodecahedron), the Archimedean solids, the Catalan solids, and the
Johnson solids via explicit Bely̆ı maps.

Graphs

I A (finite) graph is an ordered pair
�
V ,E

�
consisting of vertices V and

edges E .
v = |V | = the number of vertices
e = |E | = the number of edges
f = |F | = the number of faces

I A connected graph is a graph where, given any pair of vertices z1 and
z2, one can traverse a path of edges from one to the other.

ITwo vertices z1 and z2 are adjacent if there is an edge connecting them.
A bipartite graph is a graph where the vertices V can be partitioned
into two disjoint sets B and W such that no two edges z1, z2 2 B

(respectively, z1, z2 2 W ) are adjacent.
I A planar graph is a graph that can be drawn such that the edges only
intersect at the vertices.

The Sphere as The Extended Complex Plane

Through stereographic projection, we
can establish a bijection between the
unit sphere S2(R) and the extended
complex plane P1(C) = C [ {1}.

Define stereographic projection as that map from the unit sphere to
the complex plane.
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Bely̆ı maps

Let � : X ! P1(C) be a meromorphic function on a Riemann surface X .
We say z 2 X is a critical point if �0(z) = 0, and w 2 P1(C) is a
critical value if w = �(z) for some critical point z 2 X . A rational
function � : X ! P1(C) which has at most three critical values�
0, 1, 1

 
is called a Bely̆ı map.

Dessin d’Enfant

Fix a Bely̆ı map � : X ! P1(C). Denote the preimages
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The bipartite graph �� =
�
V ,E

�
with vertices V = B [W and edges E

is called Dessin d’Enfant. We embed the graph on X in 3-dimensions.

Platonic Solids

Rigid Rotations of the Platonic Solids

We have an action � : PSL2(C)⇥ P1(C) ! P1(C).
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are the rigid

rotations of the regular convex polygons, with

r(z) = ⇣n z and s(z) =
1
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are the rigid rotations of the

tetrahedron, with
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are the rigid rotations of the

octahedron and the cube, with
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icosahedron and the dodecahedron, with
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Platonic, Archimedean, Catalan, and Johnson Solids

I A Platonic solid is a regular, convex polyhedron. They are named after
Plato (424 BC – 348 BC). Aside from the regular polygons, there are five
such solids.

I An Archimedean solid is a convex polyhedron that has a similar
arrangement of nonintersecting regular convex polygons of two or more
di↵erent types arranged in the same way about each vertex with all sides
the same length. Discovered by Johannes Kepler (1571 – 1630) in 1620,
they are named after Archimedes (287 BC – 212 BC). Aside from the
prisms and antiprisms, there are thirteen such solids.

I A Catalan solid is a dual polyhedron to an Archimedean solid. They are
named after Eugène Catalan (1814 – 1894) who discovered them in 1865.
Aside from the bipyramids and trapezohedra, there are thirteen such
solids.

I A Johnson solid is a convex polyhedron with regular polygons as faces
but which is not Platonic or Archimedean. They are named after Norman
Johnson (1930) who discovered them in 1966. There are ninety-two
Johnson solids.

Proposition (Wushi Goldring, 2012)

Let %(w) be a rational function. The composition % � � is also a Bely̆ı
map for every Bely̆ı map � : X ! P1(C) if and only if % is a Bely̆ı map
which sends the set

�
0, 1, 1

 
to itself.

Proposition (Nicolas Magot and Alexander Zvonkin, 2000)

The following % are Bely̆ı maps which send the set
�
0, 1, 1

 
to itself.
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8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

�(w � 1)2/(4w) is a rectification,

(4w � 1)3/(27w) is a truncation,
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(4� w)3/(27w 2) is a bitruncation,
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7496192 (w + ✓)5

25 (3 + 8 ✓)w
�
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�3 is a snubification,

where ✓2 � (7/64) ✓ + 1 = 0.

Rotation Group D

n

: Regular Convex Polygon
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4 zn
: v = n + n, e = 2 · n, f = 2

Rotation Group A4: Tetrahedron
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64 z3

�
z

3 � 1
�3

�
8 z3 + 1

�3 : v = 4 + 6, e = 2 · 6, f = 4

Rotation Group S4: Rhombicuboctahedron / Deltoidal
Icositetrahedron

Rotation Group A5: Truncated Icosahedron / Pentakis
Dodecahedron

Approach

Following Magot and Zvonkin, reduce to easier cases using “hypermaps”
� : P1(C) ! P1(C), then composing � = � � f where
f : P1(C) ! P1(C) is a Bely̆ı map as a function of either zn or
4 zn/(zn + 1)2 such that Aut(f ) ' Z

n

or Aut(f ) ' D

n

, respectively.

Hypermaps: Rotation Group Z

n

I Wheel/Pyramids (J1, J2)

I �(w) =
w

3 (w + 8)
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I Cupola (J3, J4, J5)
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I Elongated Pyramids (J7, J8, J9)
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I Diminished Trapezohedron
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Hypermaps: Rotation Group D

n

I Elongated Bipyramid
(J14, J15, J16)

I �(w) =
w (32w � 5)4

(80w + 1)3

IOrthobicupola
(J27, J28, J30)

I �(w) =
(w � 2.411)4 (w + 0.138)4

w (w + 3.086)3 (w � 0.441)4

I Elongated Gyrobicupola
(J36, J37, J39)

I �(w) =

⇥
(w3+(0.739+0.223 i)w2�(0.754+0.034 i)w+(0.002�0.020 i)

⇤4

w
⇥
w�(0.041�0.283 i)

⇤3 ⇥
w2�(2.004+0.189 i)w+(0.005+0.324 i)

⇤4

Theorem (E. Baeza, L. Baeza, C. Lawrence, and C. Wang,
2014)

There are explicit Bely̆ı maps � for

IWheel/Pyramids (J1, J2)
I Cupola (J3, J4, J5)

I Elongated Pyramids (J7, J8, J9)
IDiminished Trapezohedron

which have rotation group Aut(�) ' Z

n

; and

I Bipyramid (J12, J13)
I Elongated Bipyramid (J14, J15, J16)
I Gyroelongated Bipyramid (J17)
IOrthobicupola (J27, J28, J30)
I Gyrobicupola (J29, J31)

I Elongated Orthobicupola (J35, J38)
I Elongated Gyrobicupola (J36, J37,
J39)

IDipole/Hosohedron
ITruncated Trapezohedron
I Bifrustum/Truncated Bipyramid

which have rotation group Aut(�) ' D

n

.
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