Abstract
Each finite, connected planar graph has an automorphism group G; such permutations can be extended to automorphisms of the Riemann sphere $S^{2}(\mathbb{R}) \simeq \mathbb{P}^{1}(\mathbb{C})$. In 1984, Alexander Grothendieck, inspired by a result of Gennadiĭ Belyı̆ from 1979, constructed a finite, connected planar graph Δ_{β} via certain rational functions $\beta(z)=p(z) / q(z)$ by looking at the inverse image of the interval from 0 to 1 . The automorphisms of such a graph can be identified with the Galois group Aut (β) of the associated rational function $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$. In this project, we investigate how restrictive Grothendieck's concept of a Dessin d'Enfant is in generating all automorphisms of planar graphs. We discuss the rigid rotations of the Platonic solids (the tetrahedron, cube, octahedron, icosahedron, and dodecahedron), the Archimedean solids, the Catalan solids, and the Johnson solids via explicit Belyı̆ maps.

Graphs

- A (finite) graph is an ordered pair (V, E) consisting of vertices V and edges E.
$v=|V|=$ the number of vertices
$e=|E|=$ the number of edges
$f=|F|=$ the number of faces
- A connected graph is a graph where, given any pair of vertices z_{1} and
z_{2}, one can traverse a path of edges from one to the other.
- Two vertices z_{1} and z_{2} are adjacent if there is an edge connecting them. A bipartite graph is a graph where the vertices V can be partitioned into two disjoint sets B and W such that no two edges $z_{1}, z_{2} \in B$
(respectively, $z_{1}, z_{2} \in W$) are adjacent.
- A planar graph is a graph that can be drawn such that the edges only intersect at the vertices.

The Sphere as The Extended Complex Plane
-hrough stereographic projection, we an establish a bijection between the nit sphere $S^{2}(\mathbb{R})$ and the extended omplex plane $\mathbb{P}^{1}(\mathbb{C})=\mathbb{C} \cup\{\infty\}$.

Define stereographic projection as that map from the unit sphere to the complex plane.

$$
\begin{array}{cl}
S^{2}(\mathbb{R}) & \xrightarrow{\sim} \quad \mathbb{P}^{1}(\mathbb{C}) \\
(u, v, w)=\left(\frac{2 x}{x^{2}+y^{2}+1}, \frac{2 y}{x^{2}+y^{2}+1}, \frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1}\right) & \mapsto x+i y=\frac{u+i v}{1-w}
\end{array}
$$

Belyĭ maps
Let $\beta: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ be a meromorphic function on a Riemann surface X. We say $z \in X$ is a critical point if $\beta^{\prime}(z)=0$, and $w \in \mathbb{P}^{1}(\mathbb{C})$ is a critical value if $w=\beta(z)$ for some critical point $z \in X$. A rational function $\beta: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ which has at most three critical values
$\{0,1, \infty\}$ is called a Belyĭ map.
Dessin d'Enfant
Fix a Belyǐ map $\beta: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$. Denote the preimages

The bipartite graph $\Delta_{\beta}=(V, E)$ with vertices $V=B \cup W$ and edges E is called Dessin d'Enfant. We embed the graph on X in 3-dimensions.

Platonic Solids
Tetrahedron
(four faces)

Rigid Rotations of the Platonic Solids
We have an action $\circ: P S L_{2}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$.

- $Z_{n}=\left\langle r \mid r^{n}=1\right\rangle$ and $D_{n}=\left\langle r, s \mid s^{2}=r^{n}=(s r)^{2}=1\right\rangle$ are the rigid rotations of the regular convex polygons, with
- $A_{4}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{3}=1\right\rangle$ are the rigid rotations of the tetrahedron, with

$$
r(z)=\zeta_{3} z \quad \text { and } \quad s(z)=\frac{1-z}{2 z+1} \text {. }
$$

- $S_{4}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{4}=1\right\rangle$ are the rigid rotations of the octahedron and the cube, with

$$
r(z)=\frac{\zeta_{4}+z}{\zeta_{4}-z} \quad \text { and } \quad s(z)=\frac{1-z}{1+z} \text {. }
$$

- $A_{5}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{5}=1\right\rangle$ are the rigid rotations of the icosahedron and the dodecahedron, with

$$
r(z)=\frac{\left(\zeta_{5}+\zeta_{5}^{4}\right) \zeta_{5}-z}{\left(\zeta_{5}+\zeta_{5}^{4}\right) z+\zeta_{5}} \quad \text { and } \quad s(z)=\frac{\left(\zeta_{5}+\zeta_{5}^{4}\right)-z}{\left(\zeta_{5}+\zeta_{5}^{4}\right) z+1} \text {. }
$$

Platonic, Archimedean, Catalan, and Johnson Solids
A Platonic solid is a regular, convex polyhedron. They are named after Plato ($424 \mathrm{BC}-348 \mathrm{BC}$). Aside from the regular polygons, there are five such solids.

- An Archimedean solid is a convex polyhedron that has a similar arrangement of nonintersecting regular convex polygons of two or more different types arranged in the same way about each vertex with all sides the same length. Discovered by Johannes Kepler (1571-1630) in 1620, they are named after Archimedes (287 BC - 212 BC). Aside from the prisms and antiprisms, there are thirteen such solids.
- A Catalan solid is a dual polyhedron to an Archimedean solid. They are named after Eugène Catalan (1814-1894) who discovered them in 1865. Aside from the bipyramids and trapezohedra, there are thirteen such solids.
- A Johnson solid is a convex polyhedron with regular polygons as faces but which is not Platonic or Archimedean. They are named after Norman Johnson (1930) who discovered them in 1966. There are ninety-two Johnson solids

Rotation Group S_{4} : Rhombicuboctahedron / Deltoidal Icositetrahedron

Proposition (Wushi Goldring, 2012)
Let $\varrho(w)$ be a rational function. The composition $\varrho \circ \beta$ is also a Belyı̆
map for every Belyı̆ map $\beta: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ if and only if ϱ is a Belyı̆ map which sends the set $\{0,1, \infty\}$ to itself.

Proposition (Nicolas Magot and Alexander Zvonkin, 2000)
The following ϱ are Belyĭ maps which send the set $\{0,1, \infty\}$ to itself.
$\left(-(w-1)^{2} /(4 w) \quad\right.$ is a rectification,
is a truncation,
is a birectification,
is a bitruncation,
is a rhombitruncation,
is a rhombification,
is a snubification,

Approach
Following Magot and Zvonkin, reduce to easier cases using "hypermaps"
$\phi: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$, then composing $\beta=\phi \circ f$ where
$f: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a Bely̌ map as a function of either z^{n} or
$4 z^{n} /\left(z^{n}+1\right)^{2}$ such that $\operatorname{Aut}(f) \simeq Z_{n}$ or $\operatorname{Aut}(f) \simeq D_{n}$, respectively.

Hypermaps: Rotation Group D_{n}

- Elongated Bipyramid $\left(J_{14}, J_{15}, J_{16}\right)$

$$
\phi(w)=\frac{w(32 w-5)^{4}}{(80 w+1)^{3}}
$$

- Orthobicupola $\left(J_{27}, J_{28}, J_{30}\right)$
- $\phi(w)=$
$\frac{(w-2.411)^{4}(w+0.138)^{4}}{w(w+3.086)^{3}(w-0.441)^{4}}$

- Elongated Gyrobicupola
$\left(J_{36}, J_{37}, J_{39}\right)$
\qquad

Theorem (E. Baeza, L. Baeza, C. Lawrence, and C. Wang, 2014)

There are explicit Belyĭ maps β for

- Wheel/Pyramids $\left(J_{1}, J_{2}\right)$
- Cupola (J_{3}, J_{4}, J_{5})
which have rotation group $\operatorname{Aut}(\beta) \simeq Z_{n}$; and
- Bipyramid $\left(J_{12}, J_{13}\right)$
- Elongated Bipyramid $\left(J_{14}, J_{15}, J_{16}\right)$
- Gyroelongated Bipyramid (J_{17})
- Orthobicupola $\left(J_{27}, J_{28}, J_{30}\right)$
- Gyrobicupola $\left(J_{29}, J_{31}\right)$
which have rotation group $\operatorname{Aut}(\beta) \simeq D_{n}$
Acknowledgements
We would like to thank the following people for their support:
- The National Science Foundation (NSF) and Professor Steve Bell,
- Dr. Joel Spira,
- Andris "Andy" Zoltners,
- Professor Edray Goins, and
- Dr. Kevin Mugo.

